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Abstract. In classical electrodynamics, lhe LiCnard-Wiechert (LW) potenrials reveal their own 
peculiar properties. That is to say, the LW potentials possess a kind of wave and particle duality: 
they are the solutions to inhomogeneous wave equations which describe lhe electromagnetic 
fields produced by a moving charged particle. 

From this point of view, this paper considers the particle-dynamics picture of the LW potentials. 
The consideration is performed based on the new representaton of the Lw potentials, which was 
introduced by Kawaguchi and Murata (1989). 

From this consideration, some formulae on the LW potentials, which are similar to those of 
particle dynamics, are presented. 

1. Introduction 

Since the LMnard-Wiechert (Lw) potentials were first introduced, these potentials have been 
widely used in electrodynamics. A typical example, in which Lw potentials are applied, is 
Schwinger’s formula for a power-spectrum distribution of synchrotron radiation [I]. On the 
other hand, these potentials have been related to a serious problem in electrodynamics for a 
long time. The Lw potentials predict so-called ‘radiation damping’ in particle dynamics. It 
is well known that self-consistent particle dynamics, containing radiation damping, has not 
yet been discovered. 

LW potentials reveal their own peculiar properties in classical electrodynamics. That is 
to say, LW potentials possess a kind of wave and particle duality: they are the solutions 
to inhomogeneous wave equations which describe the electromagnetic fields produced by a 
moving charged particle. 

From this point of view, this paper considers the particle-dynamics picture of the LW 
potentials. The consideration is performed based on the new representation of Lw potentials, 
which is presented by Kawaguchi and Murata [Z]. 

2. New representation of the LiCard-Wiechert potentials and superpotentials 

In this section, the new representation of L w  potentials and superpotentials are summarized 
for later reference. Let A’’ = @ / c ,  A) be the LW potentials in the four-dimensional form: 
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Here, yp(&) = (crc, y(i,)) are the four-dimensional coordinates of the moving particle, 
which carries charge, e, uC = y(l,dg/cdtr) is the four-velocity vector of the particle, y 
is defined ( I  - ldy/dr,lz/c2)-’/’, R” = (x” - yqrr ) )  is the displacement vector from the 
source point y’ to the observation point x” = (ct, x), EO is the dielectric constant and c is 
the velocity of light. The retarded time r,, is implicitly defined by the following recursive 
equation, 
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Then, there are some formulae relevant to the retarded time [3] 

(3) 
cat, Y R ,  _ = _  
axp R,P 

or more generally 

ay%) car, dyA 
axp axpcdtr 

- = _ _ - ,  

RpoA 
R,uY 

= -. 

It is found 6om equation (4) that y” and A” satisfy the following equations: 

ay”  
ax” 

A’ = -A”.  ay” 

-=  

ax” 

Moreover. 

(4) 

where 0(= -a2/ax,ax”) is the DAlembertian. 

of the LW potentials as follows 
Now, comparing equation ( I )  with equation (7), one can derive the new representation 

Accordingy, the functions y”(c t ,  I) can be regarded as the potentials of the LW potentials 
(the LW superpotentials). Furthermore, if we introduce the following tensor n”.: 

equation (8) can be revnitten as follows 
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Figure 1. Differential form diagram of electrodynamics. 

where equation (5) has been used in equation (10). According to the definition by Nisbet 
[4] or Laporte and Uhlenbeck [SI, the tensor np. can be regarded as the Hertzian tensor 
potentials for the LW potentials. 

One can find some similarities between the LW potentials and the superpotentials. We 
know that the electromagnetic field tensor Fwu is defined by 

The field tensor satisfies the following Maxwell‘s equations: 

and 

where J f i  = (cp.  J )  is the four-dimensional current-density vector. Some similarities 
between the Hertzian tensor potentials n,, and the field tensor F,, can be found by 
comparing equations (9) and (10) with equations (11) and (12), respectively. Moreover, 
noting that equation (13) is an identity when tensor Fpy is defined by equation (ll),  it is 
readily proved that the Hertzian tensor potentials lip. satisfy the following equation: 

anuh an,, anA, 
ax& ax* ax” -+- +-=o. 

Summarizing these correspondences, we have 

A’ ++ yp 
F”” c, IllL” 

J’ i+ A’. 

The differential form diagram of electrodynamics-including superpotentials-can be 
drawn as in figure 1 .  The notation * denotes the dual operator and d denotes the exterior 
derivative operator. Figure 1 helps us to understand the relation between the superpotentials 
j and the four potentials 8. 

The authors presented a particle trajectory estimation method from far electromagnetic 
fields using LW superpotentials and confirmed the validity of the estimation method using 
numerical calculations [6,7]. The result of the numerical calculation also tells us the validity 
of the new representation. 
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3. Consideration on particle dynamics pictures of the Li&nard-N‘iechert potentials 

We have referred to a kind of wave and particle duality of the LW potentials in the 
introduction of this paper. LW potentials, evidently, are results of the inhomogeneous wave 
equation. We now have the new representation of the Lw potentials. This section discusses 
particle-dynamical pictures of LW potentials using the new representation. 

If the particle motion is periodic, the explicit expression of the LW superpotentials 
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y”(ct ,  2) is given by the following Fourier form 121: 

where WO is the angular frequency of the periodic motion. For non-periodic motion, equation 
(15) becomes 

On the other hand, the new representation of Lw potentials (8), gives us the following 
particular integral: 

Of course, expressions (15‘) and (16) have to be equivalent to each other. To compare 
equation (15‘) with equation (16). we shall transform equation (16) as follows 

Since equations (15’) and (17) are equivalent to each other, we obtain 

C 

= s S d R ’  A@@’, x‘) 
err lz-x‘l 

where dW(= c dt‘du‘) denotes four-dimensional infinitesimal volume. Equation (18) 
implies that the line and volume integrals in four-dimensional space are equivalent to each 
other. However, there are no mathematical theorems that equate line integrals to volume 
integrals. This aspect reminds us of Dirac’s tube in four-dimensional space [SI. That is 
to say, regarding the line integral in equation (18) as a mean value of the integral on a 
very small super-surface which encloses the particle orhit (figure Z), we can apply Gauss’s 
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theorem to equation (18). For this, we shall transform the line integral (the left-hand side 
of equation (I  8)) as follows 

where S is a very small two-dimensional surface which encloses the particle and 

SO = dS‘ 

dV‘ = cdt‘dS‘ 

( V  denotes the super-surface on the tube). The volume integral in equation (18) is regarded 
as an integral on the outside of the tube. This volume integral is transformed as follows 
(see appendix A) 

x expi [or - ot’ - - rfl]] 

In this way, Gauss’s theorem can be applied to equation (22) as follows 

0 0  

C 
x expi [ot - ;t‘ - -1z - z/l ] ]  

where (-6”) denotes a unit normal vector on the tube surface (6” is also normal to the 
direction of the orbit (U”:” = 0)). Equations (19) and (23) have to be equivalent to each 
other, because of equation (18). Comparing the right-hand sides of equations (19) and (23), 
we derive the following equations: 

1 1 dy’(t’) EOC BA”(t’, Z) 
= -6. real part. 

c So dt’ e ax: 
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Here, one should note that equations (U) and (26) are evaluated as mean values on the tube 
surface, since the left-hand side of equation (18) is transformed into equation (19) based on 
such an idea. Similarly, all values in equations (U) and (26) have to be evaluated as mean 
value on the tube surface, for example, 
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Changing the variable t’ to s (s = cr; r is the proper time), we have 

One finds that only the anti-symmetric part of the value aAw/axY can contribute to equation 
(27) (see appendix B). In this way, equation (27) becomes 

EOC 

2.2 u’(s) = - - - v ( s ) S ~ F ’ ” ~ ~ ( S )  

aAY aA” FP” = - -_ 
ax, ax, ’ 

Differentiation of equation (28) by s along the orbit yields 

The vector $.(s) is normal to the orbit direction (u’t. = 0). Therefore, 
expanded using the Frenet coordinate as follows 

can be 

B.(s) = a!(s)e%) + az(s)8;2’(s) + as(s)e;3)(s) (30) 

where the vectors e;’), 
the coefficients al(s).  az(s) and a3(s) satisfy the following condition: 

and are the first, second and third unit-normal vectors and 

a,(s)2+a2(S)2+a3(s)* = 1. (31) 

Applying the Frenet-Serret equations to dl.(s)/ds, equation (29) becomes 

where U]($), uz(s)  and y ( s )  are the first, second and third curvatures of the orbit. 
Here, i f  the following condition is satisfied, 
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Four dimensional region Q 

Surface. S ( 2D ), which encloses the particle 

Figure 2. Thin tube model of the particle orbit 

and the sum of the second, third and fourth terms in the right-hand side of equation 
(32) is very small compared with the first term, equation (32) becomes the well known 
equation of motion (the Lorentz force equation). However, one cannot proceed to further 
discussions, because classical electrodynamics in such a small region has not yet been 
developed. However, it should be remembered that equation (32) was derived from the LW 
potentials (results of inhomogeneous wave equation), not particle dynamics, 

Ringermacher 191 pointed out the Lorentz-Dirac equation for a radiating particle, 

ds ds 
duF 
ds 

mc- = eF:uV + (34) 

can be regarded as an expansion of the vector eFku” (which is perpendicular to the vector 
U @ )  using the basis of the Frenet coordinate 

(35) 

where p“’, 8”’ and ,!3”) are the components of the Frenet coordinate and have the following 
values: 

e F / u ”  = p 5 ‘ 1 ’ ”  + p p  + B‘3””’ 

8‘3’ = 0. (38) 
The third base 5”’” is not used in the expansion. However, it is natural that all of the 
bases are used for the expansion, because only condition (eFfu”u, = 0) is imposed on the 
vector e F f u ” .  Taking into account that the Lorentz-Dirac equation has some difficulties 
itself, one can interpret equation (32) as one possible generalization of the Lorentz-Dirac 
equation. Of course, more information is necessary to find the final coefficient Bo’, which 
makes the Lorentz-Dirac equation free from the difficulties. 
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4.  Consideration on the new representation of the Libnard-Wiechert potentials from 
quantum mechanical point of view 

In the last part of this paper, we shall consider the particle-dynamics picture of the LW 
potentials from a wave mechanics point of view. Indeed, the new representation gives us a 
relation between elecbomagnetic fields AJ’ and particle coordinates yJ’ in the wave equation 
form. Equation (8) is rewritten as follows, using equation (6) 

H Kawaguchi and T Honma 

or 

where the Lorentz gauge condition, 

has been invoked. Changing variables from x @  to eJ’ = xJ’/ia, equation (40) becomes 

where a(= ez/(4a&och)) is the fine structure constant and $* is defined by @@(.$*) = 
yJ’(x*). We shall use the notation (a/axJ’) instead of (a/@.) from here, for simplicity, i.e. 

This is reminiscent of the Klein-Gordon equation 

(44) 

In fact, if we replace iha/ax” with thegeneralized momentum P”, equation (43) becomes 

1 a 
a x u  

[hz17 + 2iheA”- - eZAYA, + m2c2 @ = 0. 

Pk(PK - 2eAK)@ = 0. (45) 

Using the relation P” = p” +eA” (where p” = mu“ is ordinary momentum), equation (45) 
is transformed into, 

(pv + eA,) (p”  - eA”)@ = 0 

(pup” - ezAvA”)@ = 0 

(46) 

or 

(m2cz - e2A.A”)@ = 0. (47) 

Thus, equation (43) implies that the last two terms in equation (44) vanish and, hence, 
yJ’ satisfies the Klein-Gordon equation. Then, the superpotentials yu  correspond to the 
wavefunction @ (or spinor). 

Here, it should be noted that one cannot say anything about the relation between the 
above Klein-Gordon equation and the Klein-Gordon equation in quantum mechanics. 
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5. Summary 

This paper has discussed particle-dynamics pictures revealed by LW potentils and some 
formulae on the LW superpotentials have been presented. 

The particular integral of the new representation has given us an equation of motion 
which is similar to the Lorentz-force equation of motion. The equation of motion has also 
given us one possible generalization of the Lorentz-Dirac equation for a radiating particle. 

Consideration on wave pictures of the new representation, with respect to the Lw 
superpotentials, has shown the existence of some formulae which are similar to formulae 
in quantum mechanics. 

Appendix A 

Using the formula 

2 
“ct’ + 15 - x‘l] = - Ix - 1‘1 

the right-hand side of equation (22) is transformed as follows, 

C 

EO A”(t‘, x’) 
e H  12 - 1‘1 
- 

C 

= -A’O‘[ct‘+[x-x‘1]expiU Eo 

2eH 

C 

Noticing that, 

it is found that equation (A2) is rewrittn as follows, 

C 

EO A’@’, x‘) - 
en I x - x ’ ~  

_- 
2ezwaxY‘ i ax: 

- 
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Transforming the second term in the right-hand side of equation (A4), we can obtain 

H Kawaguchi and T Honma 

C 

80 A”(t‘, 2’) - 
en Is- 2‘1 

1 - I a  ( C 

-W a 
2enoa.v‘ [. i ax: 

, I= -s‘l ’--expiw t - t  -- =-- 

C 

where the following condition was used in the above transformation: 

O‘A” = 0, in the integral region $2 of the equation (18). (A61 

Appendix B 

The value aA’/ax, can be split into two parts, a symmetrical and an anti-symmettical parts, 
as follows, 

Taking the scalar product between and equation (27) 

To satisfy equation (B2) for arbitnry c,, aA@/axY in equation (27) should have only the 
antisymmetrical component as follows 
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