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Abstract, In classical electrodynamics, the Liénard-Wiechert (Lw) potentials reveal their own
peculiar properties. That s to say, the Lw potentials possess a kind of wave and particle duality:
they are the solutions to inhomogeneous wave equations which describe the electromagnetic
fields praduced by 2 moving charged particle.

From this point of view, this paper considers the particle-dynamics picture of the Lw potentials.
The consideration is performed based on the new representation of the Lw potentials, which was
introduced by Kawaguchi and Murata (1939).

From this consideration, some formulae on the Lw potentials, which are simifar to those of
patticie dynamics, are presented.

1. Imtroduction

Since the Liénard-Wiechert (LW) potentials were first introduced, these potentials have been
widely used in electrodynamics. A typical example, in which LW potentials are applied, is
Schwinger’s formula for a power-spectrum distribution of synchrotron radiation [1]. On the
other hand, these potentials have been related to a serious problem in electrodynamics for a
long time. The LW potentials predict so-called ‘radiation damping’ in particle dynamics, It
is well known that self-consistent particle dynamics, containing radiation damping, has not
yet been discovered.

LW potentials reveal their own peculiar properties in classical electrodynamics. That is
to say, LW potentials possess a kind of wave and particle duality: they are the solutions
to inhomogeneous wave equations which describe the electromagnetic fields produced by a
moving charped particle,

From this point of view, this paper considers the particle-dynamics picture of the Lw
potentials. The consideration is performed based on the new representation of LW potentials,
which is presented by Kawaguchi and Murata [2].

2. New representation of the Liénard—Wiechert potentials and superpotentials

In this section, the new representation of LW potentials and superpotentials are summarized
for later reference. Let A* = {¢/c, A) be the LW potentials in the four-dimensional form;

e uh(5;)

Amege? R, (Eu () 0

A¥(cr, x) =
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Here, y#(r;) = (ct, y()) are the four-dimensional coordinates of the moving particle,
which carries charge, e, u# = y(1,dy/cdy) is the four-velocity vector of the particle, v
is defined (1 ~ |dy/dg|2/c?)~ 12, R¥ = (x#* — y#(&)) is the displacement vector from the
source point y¥* to the observation point x* = {cf, &}, & is the dielectric constant and c is
the velocity of light. The retarded time #, is implicitly defined by the following recursive
equation,

e~y

h=1— - @
Then, there are some formulae relevant to the retarded time [3]
cdi; YR,
ax*  Ryu’ ®
or more generally
3y* () _cin dy*
axk  8x* edt,
L “@)
_ Ryu
Ry’
It is found from equation (4) that y* and A* satisfy the following equations:
ayY
=1 5
ppT 6);
gyt
AM = X4 (6)
dxv
Moreover,
2ut
o _
Oy =-20 Q)

where O(= —3?%/3x,8x") is the D’ Alembertian.
Now, comparing equation (I} with equation (7), one can derive the new representation
of the LW potentials as follows

¢
8 ege

Al(ct, ) = — Oy, (B

Accordingy, the functions y*(cz, ®) can be regarded as the potentials of the LW potentials
(the Lw superpotentials). Furthermore, if we introduce the following tensor ITy,:

_ ¢ Ay (te) 3)’;1(&)
Mpvfet, ) = 8meoe ( dxH axv ©
equation (8) can be rewritten as follows
hy
L (10)

dxv
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Figure 1. Driferential form diagram of electrodynamics.

where equation (5) has been used in equation (10). According to the definition by Nisbet
{4] or Laporte and Uhlenbeck [3], the tensor IT,, can be regarded as the Hertzian tensor

potentials for the Lw potentials.
One can find some similarities between the LW potentials and the superpotentials. We
know that the electromagnetic field tensor F),, is defined by

A, B84,

Fyp = —b — 27K
KT gak v (n
The field tensor satisfies the following Maxwell's equations:
JF#y 1
=——J* 12
axv goc? (12)

and
8F,  0F,  8F,
dxp ax* dxv
where J* = (cp,J) is the four-dimensional current-density vector. Some similarities
between the Hertzian tensor potentials IT,, and the field tensor ¥y, can be found by
comparing equations (9) and (10) with equations (11) and (12), respectively. Moreover,
noting that equation (13) is an identity when tensor F,, is defined by equation (11), it is
readily proved that the Hertzian tensor potentials T, satisfy the following equation:
81, a8,  aM,,
dxe dxt dxv

Summarizing these correspondences, we have

=10 (13)

=0. (14)

A¥ o yP
FiY o TIY
JE o AR
The differential form diagram of electrodynamics—including superpotentials—can be
drawn as in figure 1. The notation = denotes the dual operator and 4 denotes the exterior

derivative operator. Figure 1 helps us to understand the relation between the superpotentials
¥ and the four potentials a.

The authors presented a particle trajectory estimation method from far electromagnetic
fields using Lw superpotentials and confirmed the validity of the estimation method using
numerical calculations [6, 7). The result of the numerical calculation also tells us the validity

of the new representation.
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3. Consideration on particle dynamics pictures of the Liénard-Wiechert potentials

We have referred to a kind of wave and particle duality of the Lw potentials in the
introduction of this paper. Lw potentials, evidently, are results of the inhomogeneous wave
equation. We now have the new representation of the Lw potentials. This section discusses
particle-dynamical pictures of LW potentials using the new representation.

If the particle motion is periodic, the explicit expression of the LW superpotentials
y*(ct, ) is given by the following Fourier form [2]:

(2]

et z) = Z f exp [in (wgr - - ?fm - y(r)f)] dy*{c) 15

where wy is the angular frequency of the periodic motion. For non-periodic motion, equation
(15) becomes

Yoy = —— [ dos f ” expi [wz —ot — Ll - y(t")[] dye () (151
' i @) s c )

On the other hand, the new representation of Lw potentials (B), gives us the foliowing
particular integral:

yA(ct, T Snsoc ! fd ’A"( Iw;ml,m,) /1:1:—:0'!. (16)

Of course, expressions (15) and (16) have to be equivalent to each other. To compare
equation (15") with equation (16), we shall ransform equation (16) as follows

y(ct, @) = gﬂjﬁfdu’:*’r’“ (z e — :cl )/[m x'|
_. 20c f f dat' AM(’_ fl)a ( _p_ =l : w,l) a7
_ & A“(’ . le—a|
f j:mdtf explw( r———c——).

Since equations (15’ and (17) are equivalent to each other, we obtain

11> ,_ DA o
o fJ"P‘["’f—w’ - Sl = w] 25
A _ '
=5 [ g AtE.=) m)expuo( t,_l_iy__ﬂ:_l) (18
em Jo e — ' ¢

where dQ¥'(= c¢dt'dv") denotes four-dimensional infinitesimal volume, Equation (i8)
implies that the line and volume integrals in four-dimensional space are equivalent to each
other. However, there are no mathematical theorems that equate line integrals to volume
integrals. This aspect reminds us of Dirac’s tube in four-dimensional space [8)], That is
to say, regarding the line integral in equation (18) as a mean value of the integral on a
very smal) super-surface which encloses the particle orbit (figure 2), we can apply Gauss's
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theorem to equation (18). For this, we shall transform the line integral (the left-hand side
of equation (18)) as follows

11~ , @ y”'( ) 4t
i m _wexpr[wt—wz —?Im— (t)l]
=1 dy* ( D 4
ds’ wt' — —|x — y(t’
zmijsofs cxpl wt — Ia: y(t )[] (19)
11 1 . w dy* ("
o e [ GV t- ot — 2z - of|]

2mci o fv 5o Pt [or o = Tle =] =5
where § is a very small two-dimensional surface which encloses the particle and

So = f ds’ (20)

$
Vi=cdt'ds (21)

(V denotes the super-surface on the tube). The volume integral in equation (18) is regarded
as an integral on the outside of the tube. This volume integral is transformed as follows
(see appendix A)

—
ﬂ dﬂﬁ_)explw(t_t’_lﬁ__ﬂ)

er Jo jx — x'| ¢
—EoC d G _0AH
= dgy’ # i —
Qmwew j.;} axv [(A dxf (w + Ia: ® l) Hx;’,)
x expi[wt——wt’-— 2].'z:—;z:’l]]. 22)
c

In this way, Gauss’s theorem can be applied to equation (22) as follows
r ot !

LN T A T) explm( -t - o= =i

em Jq |z — | ¢

_&¢ MB _ dAH*
_2mwfd;-v|:(,aa,(wz+ |z — m[) e

x expi[wt— ;z’—;]w—wi]] (23)

where (—E,) denotes a unit normal vector on the tube surface (£, is also normal to the
direction of the orbit (#'&, = 0}). Equations (19) and (23) have to be equivalent to each
other, because of equation (18). Comparing the right-hand sides of equations (19) and (23),
we derive the following equations:

I 1 dy#(t) £9C a dA#
A (0 A = e 2
2mciw S dr’ 2:rew£” dx; (w u Ia: 1: ') lax{) @4

or
w L
AR, 2)E,— ™ (cor’ + ?|m - :B’[) =0 imaginary part (25)

lldy“(t’) &¢ SAX(, o)
y—— 2

¢S dr e ax!

real part. (26)
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Here, one should note that equations (25) and (26) are evaluated as mean values on the tube
surface, since the left-hand side of equation (18) is transformed into equation (19} based on
such an idea. Similarly, ali values in equations (25) and (26) have to be evaluated as mean
value on the tube surface, for example,

dy# (@) 5_0__' ARt ,
o =, So o5, E,(t"). (26")

Changing the variable ¢’ to 5 (s = ¢1; T is the proper time), we have

w(s) = 2y ()SOBA 9

£u(s). 27

One finds that only the anti-symmetric part of the value dA*/9x" can contribute to equation
(27) (see appendix B). In this way, equation (27) becomes

uhis) = —%r(@)é’oﬁ’ HYE(5)

v JAH
F#\f:?_é__i. (28)

Differentiation of equation (28) by s along the orbit yields

dut (s) ___é_‘E ,88u(s)  £oc d(F‘“’y(S))
T PG R TR

£u(s). (29)

The vector &,(s} is normal to the orbit direction (#*%, = 0). Therefore, £,(s) can be
expanded using the Frenet coordinate as follows

£,(5) = ai(NEP(5) + @ ()EP (5) + 2a()EP (5) (30)

where the vectors &7, £ and §® are the first, second and third unit-normal vectors and
the coefficients a1(s), aa(s) and az(s) satisfy the following condition:

ai(s)? + aa(s)* + a3 (s)? = 1. (31)

Applying the Frenet—Serret equations to d§,(s)/ds, equation (29) becomes

%“s_“ = -2, [—a, D () ¥, (5) -+ [a, SEYED aww(s)F“”] £
Ly
+ [dzfiu:—d:(i)l — ayvay (s) F™ —ﬂsvar(S)F“":l £
LY
+ [a3ﬁ%s”_“)l + a;;_mF””y(s):' 5‘3’] (32)

where v (s5), 12(5) and w{s) are the first, second and third curvatures of the orbit.
Here, if the following condition is satisfied,

fz";"soai WY () = ;j; (33)
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Four dimensional region Q
Orbit »#(f) (1D)

\ Thin tube super-surface V (3D)

& #:Unit normal vector to orbit

Surface, S (2D ), which encloses the particle
Figure 2, Thin tube maodel of the particle orbit.

and the sum of the second, third and fourth terms in the right-hand side of equation
(32) is very small compared with the first term, equation {32) becomes the well known
equation of motion (the Lorentz force equation). However, one cannot proceed to further
discussions, because classical electrodynamics in such a small region has not yet been
developed. However, it should be remembered that equation (32) was derived from the LW
potentials {results of inhomogeneous wave equation), not particle dynamics.

Ringermacher [9] pointed out the Lorentz-Dirac equation for a radiating particle,

dut et [d%ut da,, du
o elyY il wIWwET
s eFyu+ 67 g9 ( ds? RrTarr ) (34)

can be regarded as an expansion of the vector eF*u” (which is perpendicular to the vector
u*) using the basis of the Frenet coordinate

eFby® = BEWY L gedn o ‘3(3)!;-(3)11- (35)

where g1, @ and B are the components of the Frenet coordinate and have the following
values:

|
L _ e Vi
= 6rege ds mev) (36)
Y = ¢ Vi, (37)
6 soc
g =0. (38)

The third base £®# is not used in the expansion. However, it is natural that all of the
bases are used for the expansion, because only condition (eFfu"u, = 0) is imposed on the
vector ¢F#u”. Taking into account that the Lorentz-Dirac equation has some difficulties
itself, one can interpret equation (32) as one possible generalization of the Lorentz-Dirac
equation. Of course, more information is necessary to find the final coefficient 8, which
makes the Lorentz—Dirac equation free from the difficulties.
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4. Consideration on the new representation of the Liénard—Wiechert potentials from
quantum mechanical point of view

In the last part of this paper, we shall consider the particle-dynamics picture of the Lw
potentials from a wave mechanics point of view. Indeed, the new representation gives us a
relation between electromagnetic fields A* and particle coordinates y* in the wave equation
form. Equation (8) is rewritten as follows, using equation (6)

831 goC d

Oyf = ———— A" —
y p ax,,y (39
or
d d 8repe
—_— Ay =0 40
ax> [axu € :ly (40)

where the Lorentz gauge condition,

gAY
—— =0 4]
T (41)

has been invoked. Changing variables from x* to £* = x#/ia, equation (40) becomes

2z
[_;ﬁagfag +2eA }qs“(s y=0 “2)

where a(= e?/(4megch)) is the fine structure constant and ¢* is defined by ¢*(*) =
y*(x*). 'We shall use the notation (3/8x*) instead of (8/3£) from here, for simplicity, i.e.

[PFD +2imed ] o = 43)

This is reminiscent of the Klein—-Gordon equation
[?ﬁl:l + ZiReA”a—i; —elAYA, + mzcz] ¥ =0 (44)
In fact, if we replace thd/dx" with the generalized momentum P,, equation (43) becomes

Pu(P* —2¢ ARy = 0. (45)

Using the relation P¥ = p¥ +eAY (where p¥ = mu" is ordinary momenium), equation (45)
is transformed into,

(pv + eA,)(p* —eA")Y =0 (46)
or
(pop’ — EAA )Y =0 (m2c? — e*A,A") ¢ = 0. (47

Thus, equation (43) implies that the last two terms in equation (44} vanish and, bence,
y* satisfies the Klein-Gordon equation. Then, the superpotentials y* correspond to the
wavefunction ¥ (or spinor).

Here, it should be noted that one cannot say anything about the relation between the
above Klein—Gordon equation and the Klein—Gordon equation in quantum mechanics,
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5. Summary

This paper has discussed particle-dynamics pictures revealed by Lw potentils and some
formulae on the LW superpotentials have been presented.

The particular integral of the new representation has given us an equation of motion
which is similar to the Lorentz-force equation of motion. The equation of motion has also
given us one possible generalization of the Lorentz—Dirac equation for a radiating particle.

Consideration on wave pictures of the new representation, with respect to the Lw
superpotentials, has shown the existence of some formulae which are similar to formulae
in quantem mechanics.

Appendix A

Using the formula

2

Ofet’ + |2 — 2] = (A1)
| — |
the right-hand side of equation (22) is transformed as follows,
gg AR, N ) . lz—
—— Cexpilw |t —t - ——
en |z —x' ¢
EO syl ' : ' |z — |
_—— —_— -— t —
?.errA Olet’ + |z — x'[] expie (t .
—E&y 0 8 ) le — 2|
= [A"a—x:’[ct' + |2 — z'|] expie (r -t = —
go &[ct + o — x’|] [ 84* ,mA#a[r:t’ +lz—='|]
2em dx;, x” ¢ ax”
-
xexpicu(t-—t'—lw ""). 42)
c
Noticing that,
aet’ + |z — 2|1 x - )
—_— = | 1, — A3
axv |& — x| (A3)
r _ s _ '
et + |z — 2’| =(1‘ T—x ) (A%)
dax!, |z —&'|
it is found that equation (A2) is rewrittn as follows,
gg AR(, 2" ) , lz—a|
———expiw |-t —
e |x—a| c
o fc 8 JAR 9 expio |t —1¢ A ]
T 2emewdx” | i ax! P c
goc DA% B X ,  lz—
- —_— r—t - . Ad
2emw 3xV i9x], me( ¢ (A9
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Transforming the second term in the right-hand side of equation (A4), we can obtain

g0 AME, 2) expiw (t PO a:’|)

er |l —a'| ¢
—gc @ -1 3 , le—o
T 2emw 3xV [A i ox P e (r ! c
L0A# , l& — 2]
—i 53 exp iw (z —-t'= - (AS)

where the following condition was vsed in the above transformation:

0'4% =0, in the integral region €2 of the equation (18). (A6)

Appendix B

The value d A% /dx, can be split into two parts, a symmetrical and an anti-symmetrical parts,

as follows,
JAF 1 fBA*  BAY dAH BA”
== + +
9x, 2\ 9x, ax, ax;. Bxu

= (B‘A“) + (BA“) (BD)
“\dx sym %y Juos
Taking the scalar product between £, and equation (27)
W ($)5u(s) = —Sor(s) -Eu(s)su(S)
(B2}

Epc

o
0= sy ()( A ) £, (5)Eu(5).
Xv sym

To satisfy equation (B2) for arbitrary £,, 3A*/8x” in equation (27) should have only the
antisymrnetrical component as follows

#() = 2 s0(6) (?—‘i— - %A—) £,(5). (B3)
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